-

| 0 yorum ]
Sponsorlu Bağlantılar



Muhammed Bin Musa El Harzemî, 780 veya 795 tarihinde Hazer Denizinin doğusundaki Harzem (Aral gölünün güneyindeki bugünkü Hive) de doğmuştur. Doğum yerine izafeten El’Harzemî diye anılır. Harzemî beş fen dalına tesirli şekilde hizmet etmiştir.
Harzemî, matematiğin geniş bir dalı olan cebirin temellerini atmıştır. Cebir mevzularını içine alan eseri, bütün dünyada cebir ilmine ad olmuştur. Harzemî, cebir bakımından Öklid’den 1000 yıl ileridedir. Cebirle ilglii meşhur eserinin adı: “El’Kitab’ül-Muhtasar fi Hısab’il - Cebri ve’l-Mukabele” dir. 12 asır önce yazılan bu eser cebir sistemlerine ait kaide ve teoremler ile yeni çözüm yollarını mevzu edinir. Bu eser Doğu ve Batı ilim dünyasında ilk müstakil cebir kitabı olma şerefini kazanmıştır.
El Cebr ve’l - Mukabeleyi Harzemî 830 yılında şark seyahatin dan döndüğünde Halife Memun’un isteği üzerine Arapça olarak hazırlamıştır. 1145 yılında zamanın ilim dili olan Latinceye çevrilmiş ve Müsteşrik F. Rosen tarafından “The Algebre Muhammed Bin Musa” adlı tercümesi 1831 yılında Arapça metni ile birlikte Londra’da yayınlanmıştır. Eser, medenî muâmelat, arazi Ölçümü, bina yapımı ve kanal hafriyatında rastlanan pratik meseleleri cebir yolu ile halle yarayacak karekterde umuma mahsus olarak kaleme alınmıştır.
Eser, bir önsöz ile beş esas bölüm ve bir de ek bölümden meydana gelmiştir.
Birinci Kısım: Birinci ve ikinci dereceden altı ayrı tipten denklemin (muadele) geometrik yolla çözüm metodunu ihtiva eder:
1) x2 = a, 2) x2 = bx, 3) ax = b,
4) x2 + ax = b, 5) x2 + b = ax, 6) x2 = ax + b
Bu bölümün ikinci kısmında: (a ± x) ve (b ± x) gibi “Binom Formüllerinin” çarpım kaideleri de vardır.
Ayrıca, ikinci dereceden tam olmayan üç ayrı tip denklemin (muadele) tamamen kendisine mahsus değişik çözüm yollan belirtilmiştir.
İkinci Kısım: İkinci dereceden tam olmayan denklemlerin geometrik çözümünü mevzu edinir. Her tip denklem için iki ayrı çözüm yolu göstermiştir. Bu çözüm yollarından birincisi geometrik çözüm yolu olup, bugünkü cebirde “Kare ve dikdörtgen metodu” denmektedir. Bu çeşit bir çözüm yolunu, ne eski Mısır ve Mezepotamya, ne de eski Yunan ve eski Hind matematiğinde görmek mümkün değildir. Harzemî’nin bu çözüm şekli, matematikte cebir ile geometri arasında bir nevi yakınlık kurmayı hedef tutan araştırmanın ilk mahsulüdür.
Üçüncü Kısım: Birer terimi bilinmeyen iki terimli bir çarpanın neticesinin nasıl bulunacağını mevzu edinir. Burada, çarpanlara ayırma ve “özdeşlik” nevinden hususiyetleri görmek mümkündür : (x + a) (x + b), (x + a) (x - b), (x - a) (x + b), (x — a) (x — b) … çarpım durumlarını incelemiştir.
Dördüncü Kısım: münasebeti,
cebir ile
Birinci tarz: Farzedelim ki Mâl, ABCD karesiyle gösterilmiş olsun. Bu karenin kenar uzunlukları Şey’e eşit olacaktır. Şekilde DK’yı, Şey’in yanındaki sayı (katsayı) olan 10′un dörtte birine eşit olarak (DKLC), (CMNB), (BOPA), (ARSD) gibi birbirine eşit dört dikdörtgen çizelim. Bundan başka şeklîn A, B, C, D köşelerinde meydana gelen dört küçük karenin alanları toplamı: karesinin alanı da 39 + 25 = 64 olur; yani bu karenin bir kenarının uzunluğu 8′e eşittir. Çünkü verilmiş denklem, x2 + 10 x = 39 dur. Bu neticeye göre Şey’ ile 5 sayısının toplamı 8′e eşit olur. Yani x + 5 = 8 denklemi yazılır. (Çünkü dür.

II. Kısım II Mesele: x2 + B = Ax denklemi: Harzemî; bu mesele için Mâl ile 21 dirhem toplamının 10 Şey’e eşit olması misalini vermiştir. (Yani, x2 + 21 = 10 x denklemi). Burada Mâl’i temsil eden kare (ABCD) olsun. Yani Şey’ = X = AB alalım. Şimdi, bir kenarı, bilinmeyene eşit farzolunun (DEFC) dikdörtgeninin alanını, denklemdeki mutlak sayı olan 21 dirheme eşit alalım. Bu halde (AEFB) dikdörtgeninin alanı x2 + 21′e eşit olacağından verilen x2 + 21 = 10 x denklemi kurulur. (AEFB) dikdörtgeninin bir kenarının uzunluğu x olduğundan diğer kenarın uzunluğu 10′a eşittir. (Yani BF = 10 dur) Şimdi de, BF’nin orta noktası K olmak üzere (LEMN) karesini çizelim, bu karenin alanı 25′e eşittir. Bundan sonra da FP’yi AD’ye eşit alıp (PFMR) dikdörtgenini teşkil edelim, bunun alanının, (DLKC) dikdörtgeninin alanına eşitliği aşikârdır. Şekildeki (KPRN) karesine gelince onun da alanı: 25 — 21 =4 tür. (DEFC) Alan (KLEFMRPK) = 21, ve Alan (NLEM) =25 olduğundan, Alan (KPRN) = 25 - 21 = 4 olur.
Bu meselede de görülüyor ki, verilen denklemi tahkik eden 3 değeri,
II. Kısım III. Meselesi: Bu meselede denklemin tipi X2 = AX + B dir. Harezmî’nin verdiği nümerik misal, 3 Şey’ ile 4 dirhemin bir Mâl’e eşit olması, yani X2 = 3X + 4 denkleminin çözümüdür. Burada da X2 yi temsil eden şekil (ABCD) karesi ve aranılan Şev’ de AB uzunluğudur. Karenin AB kenan üzerinde BK = 3 (Şey’ in katsayısı olan 3) alalım. Bu suretle teşkil olunacak (KTCB) dikdörtgeninin alanı; 3X eşit olacağı gibi (ADTK) dik dörtgeninin alanı da 4′e (denklemdeki mutlak sayı) eşit olur, çünkü verilen denklem, 3X + 4 = X2 dir.
Şimdi KB nin N orta noktasını işaret etmek suretiyle (KLMN) karesini çizelim, bu karenin alanı: olacağından bunun bir kenarı olan AN de, eşitliği bulunur. Görülüyor ki bu çizim yolu ile x bilinmeyenini vermek üzere:
denkleminin çözümünü veren geometrik bir yol göstermiştir
II. Menaechmus (MÖ. 350), X3 =k kübik denklemini, y2 = bx, xy = ab (parabol, hiperbollerin kesiştirilmesiyle çözmüştür.
III. Euclid (M.Ö. 300), x2 + ax = a ve x2 + ax = b2 denklemlerini geometrik metodla çözmüştür.
VI. Archimedes (MÖ. 215), (De Sphaera et Cylindro, Lib, II) de, küreye dair bir problemi çözerken, koniklerinin kesiştirilmesi yolu ne çözmüştür.
Harzemînin ise (M.S. 825) adı geçen bu meşhur eserinde, Cebirde sembolizm ve ikinci derece denklemlerin çözümleri için Rönesans matematikçilerine, ikinci derece cebrine dair yapılacak büyük işler bırakmayacak kadar sistematik çalışmaları vardır.

0 yorum

Yorum Gönder